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Abstract

Experimental readings from rat cortex in our lab have demonstrated a robust ability of neu-

ral networks to maintain critical point dynamics. Whether that ability stems from the activity

of a regulatory system or is an inherent property of the network, however, remains unknown.

Throughout our investigations, a computational model has served both as a useful diagnostic

tool in developing measurements of dynamics and as a predictor of manipulations to be in-

vestigated in tissue samples. It demonstrates a robustness similar to the biological samples,

suggesting that the network structure alone may be sufficient to maintain stable dynamics. Us-

ing the model to explore network parameters, we have identified the distribution of connection

strengths between nodes in the network as having a clear influence on the dynamical behavior

of the system, and further, we have explained deviations from that relationship by identifying

particular connection patterns that link attractive behavior with an inverse branching structure.

1 Introduction

Studies have shown a strong correlation between specific cognitive functions and precisely re-

peating patterns of activity in the brain in a variety of species, and these patterns are widely

hypothesized to store information [1][2]. In our own lab, we have recorded spontaneous neural

activity in vitro over a period of several hours, generating series of short runs of correlated activity

that can then be sorted into statistically significant families of patterns. While these runs show a

greater similarity to one another than would be expected by chance, the members of any particular

family are rarely identical. By seeking trends in these families, we can see how the runs converge
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Figure 1: A single electrode in the array.
Each electrode will have contact with a pop-
ulation of neurons.

Figure 2: The array of 60 electrodes.

or diverge with time. With this approach, we hope to gain some insight into the mechanisms of

storage in the brain.

Theoretical literature has presented several models of brain computation based on different

assumptions as to the brain’s dynamics. Some have spoken of attractive behavior [3][4], where a

diverse range of inputs will cause activity to be drawn into a set pattern as the brain relates new

information to previous experiences, a system optimized for categorization of inputs. Others have

predicted chaotic activity that would allow rapid discrimination between similar inputs [5][6][7].

A third case calls for neutral activity at a critical point that best preserves information [8][9]. Ex-

periments have not yet generated evidence that would decisively confirm one of these theories in

the brain’s expressed dynamics.

2 Data Acquisition

Previous studies have shown that local field potentials can serve as an equally, if not more, ef-

fective predictor of animal behavior than activity spikes in single neurons [10]. Therefore, in

searching for patterns of activity in the brain, we want to record activity generated by popula-

tions of neurons rather than individual cells. While studies have been conducted in vivo focusing

on single-neuron activity, we can most efficiently investigate the ensemble level through an in vitro

preparation.
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Our lab has adopted two separate preparations of rat cortical tissue: acute slices and organ-

otypic cultures. The acute slice is a less complex and more immediate preparation, but has the

disadvantage that many long-range connections between neurons are severed, constraining activ-

ity to a more local radius. In cultures, however, active neurons will grow new long-range connec-

tions over the course of several weeks. Both preparations are examined on a micro-electrode array

(MEA) with sixty nodes arranged in a grid pattern at an inter-electrode spacing of 200 µm where

each node is approximately 30 µm in diameter. Figures 1 and 2 show the structure of the MEA.

When placed on the array in a solution with elevated potassium, acute slices will show sponta-

neous activity for up to ten hours while cultures can produce recordable activity for several days.

During the recording period, the electric potentials across the nodes of the array run through an

amplification system and get stored to hard disk at one millisecond intervals.
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Figure 3: A threshold is ap-
plied to data from one chan-
nel of the MEA.
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Figure 4: A section of a
timeraster generated from
processed data.
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Figure 5: A run located
within the timeraster.

Once activity dies out, the stored data are converted to a filtered waveform and processed

with a thresholding algorithm to separate noise and nominal activity from significant population

spikes. A population spike occurs when a group of neurons in the vicinity of the electrode fire

nearly simultaneously. The resultant binary data can then be represented in raster form, showing

which nodes were active in each timestep (Figure 4). In the thresholding algorithm, the data are

also downsampled, resulting in a 4 ms gap between frames. As we are interested in how activity

evolves temporally, we must carefully choose the duration of each timestep to best capture the

cause-and-effect relationships between population spikes. The 4 ms spacing approximates the

speed at which signals should be able to travel on the given spatial scale and should provide the
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best resolution for this investigation. Figure 5 shows an isolated run within a timeraster generated

from experimental data. Such a run can also be shown in a grid representation as presented in

Figure 6.

Figure 6: Data from each timestep can be represented on a grid that mimics the geometry of the MEA.
Once signals from each of the 60 channels are processed individually, active electrodes are marked in
black. Looking at grid representations from successive timesteps reveals how activity jumps through-
out the network over the course of a single run.

3 Characteristics of Sample Data

The similarity of one run to another can be quantified through a measure defined as the inter-

section (the number of electrodes that show activity in both runs) divided by the union (the total

number of different electrodes that show activity in either run):

similarity =
A ∩ B
A ∪ B

(1)

This measure can be used in the sorting algorithm that then groups these runs into statistically

significant families, but the question still remains of how to characterize the dynamics found in

those families.

As a first step to characterizing dynamics, we define a branching parameter, σ, that mea-

sures the ratio of activity between frames where An represents the number of active electrodes

in timestep n:

σ =
An

An−1
(2)
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In a chaotic system, we would expect a branching parameter greater than one such that similar

starting conditions would lead to multifarious outcomes based on the sheer number of electrodes

that could become active. Conversely, we would expect a branching parameter less than one

to cause attractive dynamics as a diverse system simplifies to a repeated state over time. Our

hypothesis suggests, then, that a balance between these two states where σ ≈ 1 would lead to the

sustained behavior of neutral dynamics.

The classifications of dynamical regimes above can also be related to the previously discussed

similarity measure. If conditions in a chaotic system become more diverse with time, we should

be able to track that evolution in our similar families of runs. To aid in the presentation of graphs

relating to that evolution, we prefer to present the relationship between runs through a difference

measure:

difference = 1− similarity = 1− A ∩ B
A ∪ B

(3)

A plot of the difference between the runs in a family at each timestep of the run leads to a difference

trajectory that can represent the dynamics of that family. As seen in Figure 7, we would expect

attractive activity to generate a negative slope, chaotic activity to generate a positive slope, and

neutral activity to show little variation.

As an extra gauge to check against our other measures, we use the Lyapunov exponent to as-

sign a value to the divergence of the system. We fit a least-squares line to the difference trajectory,

then characterize the ratio of its terminal and initial values by the following equation where d

represents the difference measure:

λ = log2

(
di + ∆d

di

)
(4)

4 The Model

4.1 Overview

The expenditure of resources required to run experiments serves as one of the major obstacles en-

countered in conducting our research. Since a great deal of time and money can be spent preparing
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Figure 7: Although the average dynamics of a system are most often neutral, individual families within
a system will show a variety of behaviors. Shown above are a selection of trajectories from a single
system and the families of runs that produced them exhibiting (a) attractive, (b) chaotic, and (c) neutral
behavior.

and recording from a sample, there is a need for a predictive model to guide the experimental pro-

cess. The major work of this investigation has focused on using and modifying a model formed

in previous experiments to develop a better understanding of the functioning of neural networks

and to make predictions of analogous manipulations to be attempted in experimental samples.

The model developed in our lab for previous studies assumes a homogenous network of nodes

that make a predetermined number of random connections to other nodes. Connection strengths

are modeled as transmission probabilities which are then assigned to each connection according

to a predetermined exponential decay distribution (see Figure 9). Once connections have been as-

signed, the model produces an activity matrix by simulating a predetermined number of timesteps

where each node has a small probability of showing spontaneous activity while previously active

nodes may transmit activity to new nodes according to their assigned transmission probabilities.

After firing, nodes experience a refractory period of several timesteps during which they cannot

become active, modeling the repolarization time necessary for a group of neurons to restore their

ionic balance to a normal state.
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4.2 Using the model to test our analytical methods

In addition to its function as a predictor of experimental activity, we were also able to use the

model as a diagnostic tool to test the functionality of our analysis algorithms. After processing

data from several different experiments under a range of pharmaceutical manipulations and gen-

erating graphs of the average difference trajectories over all the families in the experiments, we

found no significant indication of chaotic or attractive behavior; the average difference trajec-

tory was always relatively flat. Even analysis of initial data from the model produced the same

neutral behavior, leading us to believe that our implementation of similarity and difference mea-

sures might simply be poorly suited to detecting the kind of dynamical changes we were looking

for. Modifications to the model, however, were indeed able to produce trajectories significantly

removed from a neutral position. It was from these investigations that we developed our first

concept of a parameter that can reliably change dynamics.

Under normal conditions, we would expect the sum of transmission probabilities from any

particular cell to be constrained to one, which should lead to a branching parameter value near

one as well. In the model, we have found a direct relationship between these two values.

5 Influencing Dynamics in the Model

5.1 The bias parameter

While initial investigations pointed to the sum of transmission probabilities as a primary deter-

mining factor in the evolution of network dynamics, we eventually found that the distribution of

those probabilities could have an even more profound effect, even when the sum remains con-

strained to one.

As mentioned in the structure of the model, transmission probabilities are assigned accord-

ing to an exponential decay distribution. In the following equation, j represents the connection

number, k is a scaling constant, and B is a bias parameter:

P = ke−Bj (5)
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It turns out that B can be a reliable predictor of the model’s dynamics, at least in the chaotic

and neutral regimes (see Figure 8), and furthermore that it seems to play a crucial role in the

development of critical point conditions in the network. Previous investigations into information

transmission found that the critical case of neutral dynamics, with a branching parameter near

unity, optimizes the system. More recent work has found a critical point for information storage

when B is near 1.4, a condition that happens to be conducive to neutral dynamics as well [8]. Other

studies as well have shown strong evidence that the structure of real neural networks favors this

value [11].
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Figure 8: For the homogenous model, both the slope of the difference trajectory and the value of the
Lyapunov exponent steadily decrease as more bias is introduced to the weight distribution.

5.2 Bias effects in heterogeneous networks

The influence of bias on the distribution of connection strengths turns out to be a remarkably

robust effect which extends to more complex manipulations of the distribution. To test the validity

of our assumption of homogeneity in the network, we developed two new methods of assigning

transmission probabilities which allowed for several different types of nodes with differing weight

distributions. According to the first, a multiple-bias method, each node is assigned a distribution

with a unitary sum of probabilities, but with one of several values of B determining its bias. In

contrast, a scaled-bias method uses a single value of B to generate a distribution, but then assigns

scaled versions of that distribution to individual nodes such that they are no longer constrained
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to a unitary sum of outgoing probabilities though the network average would still be one. Both

of these modified methods were shown to produce attractive, chaotic, or neutral dynamics as the

overall bias was changed.
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Figure 9: A sample exponential decay bias
distribution used in the homogenous model
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Figure 10: A sample graph of the global av-
erage probability distribution for the multi-
ple bias model

To better assess if overall network bias exerted a predictable effect in all cases, we developed

a global probability distribution measure. By sorting the transmission probabilities for each node

from strongest to weakest and averaging the values for each connection number over all nodes

in the network, we can make a plot that looks very similar to the simple exponential decay of the

original model (Figures 9 and 10).

6 Evolutionary Modeling

While Figure 8 attests to a definite correlation between B and the difference slope, the unpre-

dictability that arises for B greater than 2 indicates that the particular structure of the connec-

tions between nodes may have a more profound impact on observed dynamics than we originally

thought. Since the model randomly generates connections between nodes for each new trial, two

separate instantiations of the model given the same initial parameters may end up with highly

dissimilar connection matrices. The particular structure of those matrices seems to have little ef-

fect on dynamics except in the case of highly pronounced connection bias, but understanding the
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conditions that might push the network towards a more attractive or chaotic state could give us

some additional insight into the significance of network dynamics.

To make patterns in the connection structure more obvious, we wanted to coax the model

into an extreme state and compare the features of its connection matrix with those of a randomly

generated matrix using the same bias parameter. We chose to set B at 3.0, well within the region

where we expect to see a substantial range of slopes, then generated ten different instantiations

of the model. Since our measurements depend on spontaneous activity that differs with each run,

we sampled the slope for each instantiation on ten separate time intervals and sorted the results to

give us an idea of the range of activity that could be produced by each connection matrix (Figure

11, “Original Models”).
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Figure 11: Graphs of the average slope of the difference trajectory for the member models of each
generation. Each line corresponds to a particular matrix of connections, and each of the ten points on
a line correspond to the average slope of the difference trajectories measured for the families of runs
generated by a simulated period of activity. For each graph, the line that shows the lowest average
slope is used as the template connection matrix for mutations in the next generation.

To push the model into a more extreme state, we implemented an evolutionary approach.

From our original set of ten instantiations with B = 3.0, we chose the one that showed the most
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attractive behavior (the lowest line in the graph of original models) and mutated its connection

matrix. We created ten new instantiations by randomly choosing two nodes in the parent matrix

and switching their strongest connections (probability of 0.950) with their second-strongest con-

nections (probability of 0.047). Like before, we ran each of these through ten separate periods of

spontaneous activity and graphed the resultant slopes. In this second graph, the lines are more

closely packed, indicating the greater similarity between them. Notice, though, that some of these

lines show a range of slopes that lies lower on the graph than that of the parent.

To push the model even further, we continued this evolutionary process through several more

generations, each time generating new instantiations as variants from the most attractive state in

the generation before. We could then track changes in the network structure and compare these

with the unrelated networks from the original ten models. Not every generation yields a model

with lower slope than was seen in the previous group, but the general trend does leave us with

some significantly lower-slope models to investigate, the best of which comes out of the fifth gen-

eration. Ideally, we would have liked to look at single connection changes and consider a wider

variety of mutations at each stage, but the intense computational requirements of running simu-

lations for multiple models constrained us to a somewhat more coarse resolution. We will show

in our analysis, though, that a less precise model is still sufficient to identify several interesting

relationships between connection structure and dynamics.

7 Observed Patterns in the Network

Since our evolutionary model deals only with highly biased connection distributions, our analysis

of the network structure can focus primarily on the strongest connections made by each node.

With this approach, we can look for trends in the connection matrices of different instantiations

by asking two questions: first, do some nodes have a large number of strong incoming connec-

tions, or are the strong connections more evenly distributed; and second, if we follow the strong

connections from one node to the next, do we see small circular systems that act independently or

long strings that affect a large portion of the network?

The first question can be answered using a rather simple algorithm that counts the number of
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strong connections that point toward each node. We define the“connectedness” of a node to be

zero if no other node is strongly connected to it, two if there are two such connections, etc. We must

be careful here not to confuse connectedness, which concerns the distribution of strong outgoing

connections throughout the network as a whole, with the distribution of incoming connection

strengths within each node as defined by the bias parameter. The connectedness data are shown

in Table 1, where the more attractive models seem more heavily weighted toward nodes with

only one incoming connection. Such a result suggests that attractive behavior may be encouraged

by having strong connections distributed homogeneously throughout the network rather than

concentrated on certain nodes that act as “hubs” with many incoming connections.

Generation
Incoming Connections

0 con. 1 con. 2 con. 3 con. 4 con.
High Slope 24 21 15 3 1
Parent 21 28 10 4 1
Second 22 26 11 4 1
Third 21 27 12 3 1
Fourth 19 30 12 2 1
Fifth 19 29 13 3 0
Sixth 20 28 12 4 0

Table 1: Connectedness of nodes by generation. “High Slope” refers to the top line on the graph of orig-
inal models in Figure 11 while the other rows represent the most attractive member of the respective
generation. Initially, we see variety in connectedness, with some nodes much more heavily connected
than others, but the later, more attractive models have their connections more evenly spread out so
that nodes are most likely to have exactly one incoming connection.

Looking for strings involved a more complex algorithm, but also yielded interesting results.

Considering that individual nodes must wait through a long refractory period after each firing,

we define a string as a series of strong connections between nodes that does not revisit any of its

members, and we expect that long strings might allow for stable patterns that would contribute

to attractive behavior. If we systematically visit each node in a given model and follow the strong

connections through the matrix, we can check for repeated nodes and record the strings we find.

Using that method, though, we might find duplicate strings where our starting node lies in the

middle of a longer string that has already been counted. In response, we simply compare those

strings to one another and throw out any of them that appear as a subset of a longer string.
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Table 2 shows the distribution of string lengths for each of the generations we are concerned

with. Here, attractive behavior seems to coincide with longer strings, just as we would have ex-

pected. A large number of smaller strings should allow a great variety of behavior in the network

while fewer, longer strings should allow many different input configurations to feed into the same

output behavior. Indeed, when we look at the strings produced by a model that shows particularly

low slope, we see that the majority of the strings end in the same sequence of two or three nodes,

suggesting an inverse branching structure. It seems that many “limbs” that are short strings of

activity in their own right tend to feed into a main “trunk” pattern that concludes the path that

we recognize as a distinct string.

Generation
String Length

3 4 5 6 7 8 9 10 11 12 13 14
High Slope 4 5 2 5 1 6 0 3 2 2 1 0
Parent 1 1 4 5 4 7 3 4 0 1 1 1
Second 1 2 3 4 4 7 3 2 1 1 1 2
Third 1 1 5 5 4 6 4 3 0 1 1 1
Fourth 1 1 4 5 5 6 2 2 1 0 2 2
Fifth 1 1 3 4 4 7 2 2 2 0 2 3
Sixth 1 1 3 3 5 7 1 2 3 2 1 2

Table 2: Abundance of string lengths by generation. Each string follows strong connections from node
to node in the network, terminating when a connection leads to a node that has already been visited.
Length indicates the total number of nodes visited.

We expect these two effects to work in tandem to generate attractive dynamics, and perhaps

the more homogenous spread of incoming connections throughout the network occurs as a direct

effect of having longer strings. No single node in a long string need have a large number of

incoming connections to allow several small strings of activity to flow together; the small strings

can instead connect node by node at many points along the length of the trunk. In this case,

we would expect most nodes to have only one incoming connection as they pass activity along

a string, while a few unconnected nodes serve as the end points of branches and a few nodes

with two or three incoming connections serve as junctions into the trunk, avoiding the need for

substantial hubs that mediate a great number of connections. The result is a high concentration of

activity in the trunk region even though the connections are fairly evenly distributed.
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8 Conclusion

Observations in our lab indicate neutral dynamics as basic properties of neural networks that are

remarkably resistant to manipulations. While the application of certain drugs in experimental

trials has been able to cause variations in dynamics large enough to be deemed significant, the

effect has been underwhelming. In most cases, manipulations must be radical enough to shut

down coherent activity completely before an effect can be detected.

The model has also been shown to operate with a resistance to a great variety of manipulations,

indicating that self-regulation may be an inherent property of the network structure. Neverthe-

less, some predictable behaviors have been identified. Dynamics can be determined by changing

the sum of transmission probabilities or the bias of the weight distribution for each node in homo-

geneous networks or by changing those properties globally in the heterogeneous case.

While the random nature of the connections created in the model has a minimal effect on the

dynamics of the system for most sets of input parameters, we do see a significant range of dynam-

ics at high values of the bias parameter as a result of the particular network structure generated by

the model. Analyzing patterns in the connections between nodes reveals that attractive behavior

can be correlated both with a fairly even distribution of strong connections between the nodes and

with an abundance of long uninterrupted strings of strong connections between unique nodes. We

expect that this encourages attractive behavior by allowing various stable branches of activity to

feed into one main trunk such that most runs of activity terminate in the same pattern regardless

of where they start in the network.

Investigations like these that look at local field potentials are beginning to fill in a gap in our

understanding of network dynamics in the brain. As we develop an impression of the brain’s

intermediate levels of organization as a supplement to extensive studies already available at the

whole brain and single neuron levels, we are moving toward the development of a general theory

of neural computation.
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